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Upper stage and in-space liquid rocket engines are optimized for performance through the use of high 

area ratio nozzles to fully expand combustion gases to low exit pressures, increasing exhaust velocities. 

Due to the large size of such nozzles, and the related engine performance requirements, carbon-carbon (C-

C) composite nozzle extensions are being considered to reduce weight impacts. Currently, the state-of-the-

art is represented by the metallic and foreign composite nozzle extensions limited to approximately 2000°F 

used on the Atlas V, Delta IV, Falcon 9, and Ariane 5 launch vehicles. NASA and industry partners are 

working towards advancing the domestic supply chain for C-C composite nozzle extensions. These 

development efforts are primarily being conducted through the NASA Small Business Innovation 

Research (SBIR) program in addition to other low level internal research efforts. This has allowed for the 

initial material development and characterization, subscale hardware fabrication, and completion of hot-

fire testing in relevant environments. NASA and industry partners have designed, fabricated and hot-fire 

tested several subscale domestically produced C-C extensions to advance the material and coatings 

fabrication technology for use with a variety of liquid rocket and scramjet engines. Testing at NASA’s 

Marshall Space Flight Center (MSFC) evaluated heritage and state-of-the-art C-C materials and coatings, 

demonstrating the initial capabilities of the high temperature materials and their fabrication methods. 

This paper discusses the initial material development, design and fabrication of the subscale carbon-

carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire 

testing, and discusses potential follow-on development work. The follow on work includes the fabrication 

of ultra-high temperature materials, larger C-C nozzle extensions, material characterization, sub-element 

testing and hot-fire testing at larger scale.  
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ACC  = Advanced Carbon-Carbon 
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IRAD  = Independent Research and Development 

LH2  = Liquid Hydrogen 

LOX  = Liquid Oxygen 

MoSi2  = Molybdenum Disilicide 

MSFC  = George C. Marshall Space Flight Center 

NDE  = Nondestructive Examination 

OML  =  Outer Mold Line 

PAN  = Polyacrylonitrile 

Pc   = Chamber Pressure 

PIP  = Polymer Infiltration and Pyrolysis 

SiC  = Silicon Carbide 

SiO2  = Silicon Dioxide 

SBIR  =  Small Business Innovation Research 

STTR  = Small Business Technology Transfer 

SiC  = Silicon Carbide 

TS115  = MSFC Test Stand 115 

TW  = Tape Wrap 

UHTC  = Ultra-high Temperature Ceramic 

ZrB2  = Zirconium Diboride 

ZrC  = Zirconium Carbide 

 

 

I. Introduction 

arbon-carbon (C-C) composite nozzle extensions are of great interest for use on (a) launch vehicle upper stage 

liquid rocket engines, (b) in-space liquid and nuclear thermal propulsion systems, and (c) lunar/Mars 

descent/ascent liquid propulsion systems.  The development projects presented here are part of a larger NASA and 

industry effort aimed at advancing the readiness level of United States (U.S.) C-C technology to the point that large-

scale domestically-manufactured C-C nozzle extensions (CCNE’s) can be considered as viable candidates for use on 

U.S. cryogenic liquid propulsion rocket engines.  The CCNE technology being developed is intended to support the 

needs of the commercial space transportation industry, as well as those of NASA and the Department of Defense 

(DoD).  For NASA, CCNE technology development is aimed primarily at satisfying requirements of the 

Commercial Crew and Cargo Programs, as well as those of the Science and Human Exploration and Operations 

Mission Directorates. 

Upper stage and in-space liquid rocket engines are optimized for performance through the use of high expansion 

area ratio nozzles to fully expand combustion gases to low exit pressures while increasing the gas exhaust velocities.  

Currently, the state-of-the-art is represented by the metallic and foreign composite nozzle extensions used on the 

Atlas V, Delta IV, Falcon 9, and Ariane 5 launch vehicles’ upper stage engines.  The initial two flights of the NASA 

Space Launch System (SLS) Exploration Upper Stage (EUS) will make use of the Boeing Interim Cryogenic 

Propulsion Stage (ICPS) and its Safran Ceramics (France) polyacrylonitrile- (PAN-) based CCNE 1,2,3.While a few 

U.S. domestic development programs have investigated the use of carbon-carbon extensions for liquid engines, there 

have been very limited domestic flight programs that make use of C-C nozzle extensions. The RL10B-2 is the only 

U.S. liquid engine that has flown  with a C-C composite nozzle extension – it uses a French material made by Safran 

Ceramics (formerly Snecma Propulsion Solide or Herakles). 

While the requirements and operating conditions for cryogenic liquid upper stage engines are considerably 

different from solid rocket motors, current efforts to develop large C-C composite nozzle extensions are based upon 

the technology developed under prior solid propulsion programs of the 1970’s and 1980’s3.  Such programs led to 

the development of uncoated C-C exit cones for intercontinental ballistic missiles (Peacekeeper and Midgetman) and 

for solid motor upper stages (Inertial Upper Stage and Star 48 Payload Assist Module).  The only flight-proven 

coating for C-C components in the 1980’s was the silicon carbide coating system used on the Space Shuttle 

Orbiter’s wing leading edge structural subsystem (LESS) panels, and that technology was not applicable to solid 

propulsion systems because of their extremely high operating temperatures (1950-3000ºC or 3542-5432ºF).  The 

breakup of the Soviet Union in December 1991 led to the cancellation of many DoD programs, which in turn led to 

C 
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the collapse of most of the U.S. C-C industry4,5.  Thus, when the Centaur upper stage program became interested in 

CCNE’s in the 1990’s, there were few U.S. options, and what is now Safran Ceramics was selected to develop the 

RL10B-2’s CCNE 6,7.   

As a consequence of both the large size required for nozzle extensions and the related liquid engine performance 

requirements, CCNE’s are being considered for a variety of reasons, including: 

 The use of CCNE’s enables approximately a 50% reduction in mass (weight) versus that of comparable 

metallic or ablative nozzle extensions. 

 Using C-C composite nozzle extensions significantly improves thermal margins versus that of comparable 

metallic nozzle extensions.  As uncooled metallic nozzle extensions are limited to temperatures of around 

2000ºF (1093ºC) [Ref: 8,9], CCNE’s offer improved performance capabilities and efficiencies through 

greater thermal capabilities – increases of 500 to 1000ºF are achievable, enabling upper use temperatures of 

3000ºF (1649ºC).  New and emerging C-C materials may enable CCNE designs that offer increases of up to 

2000ºF, with upper use temperatures of 4000ºF (2204ºC) being possible. 

 Substantial reductions in overall costs are possible with CCNE’s when compared to metallic nozzle 

extensions and foreign composite nozzle extensions.  Even greater cost and mass reductions may be 

possible if the regeneratively-cooled portion of the metallic nozzles can be shortened and longer CCNE’s 

used. 

 Finally, the possible use of state-of-the-art coatings and mixed matrices (carbon plus refractory 

carbides/borides) may further increase the potential capabilities of advanced C-C nozzle extensions and 

may lead to higher thermal performance. 

Primarily as a result of the lack of new liquid upper stage engine development programs in the 1970’s and 

1980’s, as well as the difficulties experienced by the solid upper stage motor programs of that time period, little 

consideration was given to CCNE’s for liquid engines until the Delta III Program decided to use C-C composite 

extensions on the Centaur Upper Stage’s RL10B-2 engine.  While ultimately solved, the problems experienced by 

the solid upper stage motor community with processing variability for multiple motor programs and the in-flight loss 

of two Star 48 motors in 1984 also surely led to a reluctance to consider CCNE’s for liquid engines10.  As noted 

above, the collapse of the Soviet Union led to a greatly reduced U.S. C-C industry.  Thus the RL10B-2 had a choice 

of a niobium alloy (C-103), a HITCO Carbon Composites 2D C-C, and a Safran Ceramics 3D C-C – the Safran 

material was chosen primarily due to weight considerations (the C-103 option) and, although solved, delamination 

concerns (the HITCO option).  To date, the Safran Ceramics C-C nozzle extensions for the Delta IV Centaur Upper 

Stage have performed flawlessly11. The Safran nozzle extension makes use of a pseudo-3D needled Novoltex 

preform that is densified through chemical vapor infiltration (CVI).  The NASA Constellation and Space Launch 

System Programs’ J-2X engine development effort initially baselined Safran Ceramics’ 3D Novoltex preform C-C 

material, but ultimately switched to a metallic approach because of a variety of cost, technical, and programmatic 

reasons12. 

With, until recently, a lack of liquid upper stage engine application opportunities and the high costs associated 

with developing, qualifying, and certifying new nozzle extensions, there has been insufficient impetus for a C-C 

nozzle extension to be developed for an upper stage engine.  To be fully flight qualified, more effort is required in 

the areas of material processing (including stable, reliable, sources for precursor materials), material 

characterization/databases, modeling capabilities, engine hot-fire testing, and viable paths to flight certification.  

Finally, there must be a clear industry need and pull for development of domestic C-C nozzle extension technology.  

The recent onset of new commercial space company launch vehicle programs and increases in the number of liquid 

rocket engines being developed has provided a significant push to develop liquid engine CCNE’s both to reduce 

costs and to provide higher performance through weight savings. 

NASA, along with various industry partners, has been working to advance the domestic supply chain for high 

temperature C-C nozzle extensions.  Such composite nozzle extension development work has been funded primarily 

through (a) investments under the NASA Small Business Innovation Research (SBIR) Program, to advance C-C 

material readiness levels, develop advanced concepts, and to acquire test data for extensions; (b) internal NASA 

program funding; and (c) independent research and development (IRAD) investments by engine manufacturers and 

the domestic C-C industry.  Although significant program funding has remained elusive, these small investments 

have allowed the industry to slowly progress forward, providing more viable candidate materials for future flight 

programs.  Significant program investments would allow more fully maturing candidate C-C materials and the 

associated processing technology, thus enabling a path to flight certification. 
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The manufacturing process development work, sub-element testing, material characterization, and hot-fire test 

campaigns described in this paper, as noted previously, are part of a much larger development program being 

pursued jointly by NASA and industry.  Under the larger program, the technology readiness level (TRL) of CCNE 

technology will be advanced through (a) design, analysis, and modeling; (b) manufacturing process and database 

development; and (c) evaluation activities including coupon, sub-element, component, and hot-fire testing.  Recent 

efforts in this technology area have addressed specific individual issues, but have not performed the integrated 

detailed work needed to incorporate the technology into flight programs.  Goals of this larger overall program 

include significantly reducing the cost of fabricating and testing C-C extensions and building industry confidence 

that C-C-based materials are viable options for upper-stage and in-space engines. 

 

 

II.  Overview of Recent NASA-Funded C-C Nozzle Extension Development Efforts 
 

Mass (weight) reduction, improved engine performance, and reduced cost are the primary reasons for the recent 

surge in interest in using carbon-carbon (C-C) composite nozzle extensions on a variety of NASA, DOD, and 

Commercial Space propulsion systems.  As was discussed in the introduction, most of the relevant C-C fabrication 

technology for rocket propulsion applications was originally developed for solid rocket motors, most notably for 

ballistic missiles and payload assist modules.  As many of these applications for C-C composites were abandoned in 

the 1985-1995 timeframe and little consideration was given to the use of C-C for liquid rocket engines (other than 

for the RL10), little, if any, progress or development occurred until roughly 10 years ago.  Around the 2005-2010 

timeframe, NASA again became interested in C-C materials for rocket propulsion applications.  Most of the NASA-

funded work initiated in that timeframe was accomplished through the Constellation Program’s J-2X engine 

program and through a variety of NASA SBIR/STTR (Small Business Innovation Research / Small Business 

Technology Transfer) projects.  Since then a variety of small NASA, DOD, and industry efforts have investigated 

specific technology issues, but an overall, coordinated, integrated effort has not been pursued – as noted above, that 

is something NASA is working towards doing now.  Additionally, the various non-propulsion efforts being 

conducted for hypersonics, heatshields, and brakes continues to contribute to the overall state-of-the-art for domestic 

high-performance carbon-carbon composite materials. 

Primarily as a result of the demonstrated success of the C-C nozzle extensions used on the Delta IV’s RL10B-2 

upper stage engines, Safran Ceramics was selected as the supplier of the CCNE for the J-2X engine in 2007.  While 

the J-2X Program eventually switched to a metallic nozzle extension, the engine development program did stimulate 

significant interest in C-C nozzle extensions, including possible domestically-sourced options.  Since then, both 

through SBIR/STTR projects and MSFC in-house technology development tasks, NASA has continued to advance 

the state of CCNE technology. 

Development work under SBIR and STTR contracts has concentrated primarily on two broad technology areas:  

attachment concepts and material fabrication methods.  Attachment concept projects have been led by Materials 

Research and Design (MR&D), Orbital Technologies Corporation (ORBITEC), Plasma Processes, and Ultramet; 

while materials development projects have been led by Allcomp, Carbon-Carbon Advanced Technologies (C-CAT), 

MR&D, Plasma Processes13, Southern Research, and Ultramet. 

The attachment concept approaches have followed two main tracks, those of (a) intermediary composite 

transition materials and (b) integrally-bonded metallic attachment components.  As a means of dealing with the 

generally substantial differences in coefficients of thermal expansion (CTE) between metallic nozzles and C-C 

nozzle extensions, intermediary hybrid composite nozzle extension transition materials have been developed.  The 

use of silicon carbide (SiC) fiber / carbon (C) matrix composites and carbon fiber / zirconium carbide (ZrC) matrix 

composites have been examined as means of transitioning from metal components to C-C components.  While still 

of relatively low technology readiness level (TRL), such concepts show promise.  An example of an Ultramet/C-

CAT demonstration component incorporating a C-ZrC transition region is shown in Figure 1a.  Methods for 

integrally bonding metallic attachment components to C-C and carbon/silicon-carbide (C-SiC) composites have 

included the use of plasma spraying, high-pressure cold spray, and electrochemical deposition techniques. 

A range of material fabrication approaches have been investigated through both SBIR and STTR efforts across 

the agency. This group of 12 projects has examined a significant range of technologies and resulted in the 

fabrication of demonstration test articles, some of which have undergone some limited hot-fire engine testing.  

Technologies explored include the following:  (a) mixed matrices and filler materials; (b) fibers derived from a 

variety of organic precursors – rayon, polyacrylonitrile (PAN), and lyocell; (c) two-directional (2D) fabric layup 
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architectures – gore and involute; and (d) coatings – electrochemical, pack-cementation, functionally-graded 

chemical vapor deposition, and plasma spray.  These technologies, and in some cases combinations of technologies, 

have been pursued to enable higher temperature capabilities, improved efficiencies, and longer duration nozzle 

extension firing times, as well as to better accommodate the CTE mismatch between the nozzles and their 

extensions.  While current nozzle extension operating temperature limits are approximately 2000ºF, the development 

goal of some of the new materials is to be able to push use temperatures up to roughly 4000ºF without significant 

loss of material (through erosion, oxidation, spallation, ablation, etc.).  Examples of some of the demonstration test 

articles fabricated under these SBIR/STTR projects are shown in Figure 1a-e. 

 
Figure 1. (a) PAN-based 2D hybrid C-ZrC/C-C fabricated by C-CAT and Ultramet.  Exit plane diameter= 

11 in.  (b) Rayon-based 2D involute C-C fabricated by Orbital ATK.  Exit plane diameter = 11 in.  (c) PAN-

based iridium-lined 2D involute C-C integral combustion-chamber/nozzle assembly fabricated by Orbital 

ATK and Plasma Processes.  Exit plane diameter = 3 in.  (d) PAN-based 2D C-C fabricated by C-CAT, using 

their “high-melt” and pack-cementation coating systems.  Attachment flange diameter = 44 in.  (e) Lyocell-

based 2D C-C fabricated by C-CAT.  Cylinder diameter = 42 in. 

A variety of domestic C-C composite materials are available that could potentially meet the needs of NASA, 

DoD and industry for cryogenic liquid rocket engines. In addition to the SBIR/STTR projects discussed above, 

MSFC has been conducting a number of projects over the past several years in cooperation with industry partners in 

order to explore some of these domestic material options for nozzle extension and combustion chamber applications.  

A series of test campaigns (discussed later in this paper), have made use of a small 1.2K-lbf liquid engine test 

facility at MSFC in order to inexpensively and rapidly screen composite nozzle extension materials through hot-fire 

engine tests.  This facility enables, through the use of a liquid-oxygen/gaseous-hydrogen (LOX/GH2) combustion 

environment, testing of nozzle extension materials at temperatures ranging from 2200º to 4000ºF for durations up to 

180 sec.  To date, tests have been performed with Orbital ATK (OATK) and C-CAT nozzle extensions.  Tests are 
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planned in the future with Allcomp under a SBIR program.  In addition to testing with LOX/GH2, testing with 

LOX/methane and LOX/kerosene can also be performed. As a means of assessing scale-up issues and making direct 

material comparisons, a pair of moderate-size C-CAT nozzle extensions fabricated with PAN- and lyocell-based 

fiber will be tested using a 35K-lbf liquid engine at MSFC in the near future.  Tag-end rings excised from these two 

25-in. exit-plane-diameter extensions have also been used to assess nozzle extension material properties and how 

they compare to flat-plate data (discussed in a later section, below). 

The rocket propulsion industry has also been investigating the potential use of large domestically-fabricated 

composite propulsion system components.  Northrup Grumman has an U.S. Air Force program exploring C-C and 

C-SiC composites for manufacturing the thrust chamber for a first-stage boost engine concept that will include 

fabrication and hot-fire testing14.  Aerojet Rocketdyne is currently evaluating a domestic source (C-CAT) for C-C 

nozzle extensions (see demonstration article shown in Figure 1d). A 33” axial length, 62” diameter C-C nozzle 

extension was fabricated under a NASA Phase III SBIR program and currently being evaluated in shaker testing and 

hot-fire conditions15.  Other industry partners have shown interest in the advancement of domestic C-C materials in 

support of their missions. 

Potential domestic fabricators of high temperature composite nozzle extensions include: 

 Allcomp, Inc. – City of Industry, CA 

 Carbon-Carbon Advanced Technologies, Inc. (C-CAT) – Kennedale, TX 

 GE Aviation – Newark, DE 

 HITCO Carbon Composites, Inc. – Gardena, CA 

 Orbital ATK (OATK) – Magna and Promontory, UT 

 Physical Sciences Inc. (PSI) – Andover, MA 

Aside from the companies listed above that have worked development of the C-C material (in conjunction with 

the coating), other companies have invested resources into development of anti-oxidation coatings relative to C-C 

materials. These include: 

 Exothermics – Toledo, OH 

 OATK COI Ceramics (COIC) – San Diego, CA 

 Plasma Processes, LLC  – Huntsville, AL 

 Ultramet – Pacoima, CA 

 

 

II. Subscale Hot-Fire Testing  

A. Overview 

In 2014, MSFC created a subscale nozzle test rig to offer affordable, long duration hot-fire testing for screening 

nozzle material systems.  It was successfully used testing Orbital ATK 2D C-C materials in 2014 and later tested 

with follow-on OATK materials and C-CAT materials in 201616,17.  The thruster used on this test rig uses a simple, 

coaxial injector supplied with liquid oxygen/gaseous hydrogen (LOX/GH2) to create high temperature 

environments.  The chamber used in the OATK test series  was a heritage (1960’s) design with a slotted copper alloy 

liner slipped into a stainless steel housing.  Using deionized water to cool the chamber allowed the thruster to be 

operated for long durations.  The initial test series with OATK successfully screened a variety of materials, but it 

also revealed that flow separation was significant due to the aggressive nozzle half-angle and the attachment area 

ratio used with the existing chamber, as observed in Figure 2.   

To provide better flow expansion, prior to testing the nozzle extensions from C-CAT, a new main combustion 

chamber (MCC) was designed for this thruster.  The chamber design was updated to use a GRCop-84 (Cu-8Cr-4Nb) 

liner fabricated with powder-bed additive manufacturing.  The hotwall profile of the new liner provided an updated 

expansion angle to achieve full flow on attached nozzle extensions.  A new stainless steel housing was fabricated to 

accommodate the updated liner design and allow for interchangeable liners.  The GRCop-84 alloy and the 

redesigned coolant channel sizes allowed the new chamber to be operated at higher pressures and temperatures, if 

desired. 

Table 1 offers a comparison of the vintage hardware and the updated assembly with the new chamber design. 

In addition to changing the liner material and its contour, the barrel section of the chamber was shortened to fit in 

the available AM machine.  The liner was fabricated at MSFC with Selective Laser Melting (SLM) in the Concept 
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Laser machine, which offered a build box of 250mm x 250mm x250mm. The new chamber length was still adequate 

to allow for proper propellant mixing of the tested hardware. The convergent radii were maintained per the heritage 

hardware since heat flux data was known and the throat diameter was maintained. The divergent radius and nozzle 

contour was completely redesigned aft of the throat.   

 

 
Figure 2. Flow Separation Observed with Infrared (IR) Thermography on NASA heritage chamber 

during OATK testing. [IR Imaging: Derek Moody and Darrell Gaddy /MSFC] 

 

Table 1. Comparison of Heritage and New Jacket MCC Designs for Test Facility. 

 

The new workhorse chambers were originally designed to enable testing of a series of regeneratively cooled 

nozzles and radiatively-cooled nozzle extensions (at reduced mixture ratios). The target nozzle size was 

approximately 6” for length and 5.5” for aft diameter. A divergent radius, Rd/Rt, of 0.5 was assumed, which 

provided the appropriate nozzle length, and the full length contour was optimized to an area ratio of 27:1. An 

attachment area ratio (AR) of approximately 4:1 was selected, which balanced the heat flux on the nozzle and 

extensions and also maximized the required length of the nozzle. The contour was designed to test at sea level 

conditions. The full AR of the nozzle was expanded to 27:1 with a wall pressure of 5.5 psia assuming a chamber 

pressure, Pc, of 750 psia. However, the chambers were designed and analyzed to a Pc of 1350 psia, which would 

allow for a longer nozzle in future testing. Ideally, the new design maintained continuity to the vintage hardware, so 

that the test rig could be operated in a similar manner but with higher Pc capability, if desired.  Figure 3 offers an 

image of the redesigned thruster with the nozzle extension attached. Flange attachment configurations have varied 

depending on the material being tested. The test rig allows mainstage test durations up to 180 seconds at MSFC 

TS115. 

 

Heritage Design New Design

Thrust Chamber Assembly, Drawing Reference MER00060-101 MER01446-001

Main Combustion Chamber, Liner MED04227-1 MER00664-001

Maximum Chamber Pressure, Pc (psia) 850 1350

Water Coolant Inlet Pressure, (psia) 2000 1000

Chamber Barrel Diameter (in) 2.25 2.25

Chamber Barrel Length  (in) 6.77 5.26 

Divergent Radius, Rd/Rt 2 0.5

Throat Diameter  (in) 1.2 1.2

Nozzle Attach area ratio (AR) 8.1:1 4.4:1
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Figure 3. 1.2K lbf Thruster with Additively-Manufactured GRCop-84 Liner and C-C Nozzle Extension. 

 

B. Orbital ATK (OATK) Configuration and Testing 

The OATK C-C nozzle extensions are based on tape wrapped (TW) carbon phenolic preforms that are then 

converted into C-C via heat treat and pitch densification. This process has demonstrated reduction in the 

manufacturing time of 2D C-C from 12–14 weeks to about six weeks using combined carbonization/graphitization 

and impregnation/carbonization cycles. This process has enabled bulk densities to be obtained that are equivalent to 

prior much-longer-duration processing methods after only three impregnation/carbonization cycles with uniform 

densities and pore structures throughout the composites. A C-C tape wrapped nozzle can be seen in Figure 4. The 

billets are tape wrapped slightly over-sized, rough machined to a blank and then converted to C-C using the rapid 

process to a density appropriate for the oxidation protection to be applied. If methods are used such as silicon-

carbide (SiC) via polymer infiltration and pyrolysis (PIP) then a more open porosity is developed in the C-C than if 

using a plasma-sprayed coating. The cone blanks are machined to final configuration prior to application of the 

oxidation protection, since none of the oxidation protection methods used significantly change the dimensions of the 

cones. 

 

 
Figure 4. OATK C-C Extension using tape wrap fabrication. 
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The OATK C-C nozzles were machined to final thicknesses which included varying thickness near the flange to 

allow for the split ring and an aft stiffener ring. The tape wrap process does allow for thicker C-C wall thicknesses 

up to approximately 0.8” using the rapid densification process. A Grafoil seal was used to interface with the 

chamber and a carbon phenolic split ring for attachment. An air plasma sprayed (APS) zirconia-based insulator was 

applied on the outer surface of the C-C cones between it and the carbon phenolic split ring attachment. The 

configuration and installation in the test stand can be seen in Figure 5. 

 

 
Figure 5. OATK C-C Extension Installed in Test Stand 115 at MSFC. 

The OATK C-C extension hot-fire configurations focused on anti-oxidation coating development. The coating 

evaluations traded fabrication costs, based on coating application time, and performance of the coatings verses the 

baseline of an uncoated C-C composite. The coatings used a variety of processes for anti-oxidation coating 

application. The shortest lead-time coating development was conducted using vacuum plasma spray (VPS) and air 

plasma spray processes by Plasma Processes, LLC. The first formulation constituted an agglomerated blend based 

on zirconium-diboride and SiC. The second coating consisted of an agglomerated blend of a molybdenum disilicide- 

(MoSi2-) based Plasma Processes proprietary coating. Both coating formulations were developed on prior efforts. 

They were down-selected for use in this application based on their good performance both in exposures to oxidizing 

environments in static air furnaces and during plasma torch testing. Coatings on C-C in high temperature 

applications have limitations due both to thermal expansion differences and interactions with the C-C substrate, and 

to reactions with the turbulent oxidizing gas flow.  

A second series of nozzle extensions used coating systems developed by OATK COIC in San Diego, CA. These 

extensions used a SiC infusion via PIP using preceramic polymers and ultra-high temperature ceramic (UHTC) 

fillers. A baseline extension configuration had no UHTC fillers, while the two additional cones used zirconium-

based fillers and hafnium-based fillers. This PIP method has a significant advantage in that the SiC infiltrates 

throughout the entire C-C article, significantly improves mechanical properties (tensile and shear capability), and 

reduces thermal conductivity relative to the bare C-C. It does require more processing time than the VPS and APS 

methods, but with improved performance.  

Another lower-cost coating method investigated during development was metal melt infiltration, which was 

completed by Exothermics. This coating method makes use of a silicon-based material and results in partial 

conversion to SiC. 
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C. C-CAT Extension Design and Fabrication 

The contour for the C-CAT extensions was based on the new truncated ideal nozzle contour and was offset 

radially at the MCC/extension interface. The baseline C-C extension was designed with an acreage wall thickness of 

approximately 0.15”, which allowed for a 2-stage layup and had acceptable structural margins at the forward end. 

Although variants of C-C material constituents and processing techniques were used, the design remained the same 

for all nozzle extensions, thus enabling commonality in tooling. The forward end of the nozzle extensions included 

an outboard step to allow for a 2-piece split ring to engage and interface with the MCC. A Grafoil seal was used at 

the joint of the extension-split ring and the MCC. 

A graphite split ring was designed to interface the extensions to the AM chamber. These split rings were 

originally machined from GES PFI-25 graphite from Graphite Products Corp, but later changed to their PFI-45 

graphite. The graphite split ring interfaced and engaged with the extension along two surfaces and was selected for 

temperature and thermal expansion compatibility with the nozzle extension. The structural analysis of the assembly 

showed a tensile and compressive bending moment at the interface in the split ring due to the startup loads, which 

required the additional thickness of the extension at the forward end. The skewed-shock plan method was used for 

the side load analysis and to determine design loads during start up18. A Grafoil GTB (inhibited 98% graphite) seal 

was captured between the split ring and the MCC flange. The Grafoil seals were all custom cut to the required 

diameters from 0.060” thick sheet. A tantalum split ring backer was used on the nozzle extension-side of the 

graphite split ring to prevent any fractured graphite from shedding. Larger washers were used with the attachment 

assembly to distribute the load. The entire assembly can be seen in Figure 6. 
 

 
Figure 6. C-CAT extension installed on the thrust chamber assembly; a) Full Assembly at MSFC TS115 

with SiC conversion coated extension,  b) View of tantalum backer split ring, graphite split ring and interface 

with ACC-4 uncoated extension. 

The extension was centered during assembly operations using a 3D plastic printed centering tool and the Grafoil 

seal was easily aligned with the groove in the split ring. Following the initial fitup, the split ring, extension and 

Grafoil were removed and inspected. The Grafoil seal showed a clear indication of compression at the MCC liner 

interface and the split ring did not show any signs of damage. 

A series of C-C nozzle extensions were designed and fabricated with variants in the material and oxidation-

protection coatings as seen in Figure 7. Common tooling was used for fabrication of all the extensions. The 

configurations of the nozzles were as follows: 

 CCAT 40 6C-FF, T-300 3K  heat treat, fiber-filled resin, ACC-6, no coating  

 CCAT 40 6C-C-FF, T-300 3K heat treat, fiber-filled resin, ACC-6, silicon carbide (SiC) conversion coating   

 T-300 3K 4000 ˚F heat treat, fiber-filled SiC-enhanced resin, ACC-6 (Experimental Material) 

 T-300 3K 4000 ˚F heat treat, ACC-6, zirconium diboride (ZrB2)/hafnium-carbide (HfC)-enhanced matrix 

(Experimental Material)19 

 

a b
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Figure 7. C-CAT 2D C-C extensions prior to hot-fire testing. From left to right: ACC-6/SiC-coated, 

EMCC ACC-6 SiC-enhanced matrix, ACC-4 Uncoated, EMCC ACC-6 ZrB2/HfC -enhanced matrix 

The material systems chosen for this effort were selected based on the desire to satisfy two main objectives. The 

first objective, addressed with the manufacture and testing of the SiC conversion coating,  was in the validation of 

the use of the SiC-coated C-C systems which are currently being considered for production nozzle extension designs 

in LOX/LH2 rocket applications. The second goal was in testing a selected set of experimental enhanced matrix C-C 

(EMCC) material systems, with the goal of identifying a viable uncoated solution which eliminates the cost and 

schedule risk associated with a standard SiC-conversion coating process. For baseline comparison, an extension was 

manufactured to provide performance data for standard uncoated C-CAT 40 ACC-6 material. The nozzle did 

experience a manufacturing issue, which resulted in a crack during machining, but was still tested to obtain baseline 

data, as later discussed. 

The current state-of-the-art oxidation protection available for the C-CAT C-C material system is based on a SiC 

pack cementation process which was first developed for the reinforced carbon-carbon nose cap and wing leading 

edges of the Space Shuttle orbiter20. It has since been used in many applications, though this effort represents the 

first time that C-CAT has fabricated a SiC-coated nozzle extension designed to be tested at temperatures and in 

environments similar to those of current production nozzle extension designs. A series of processing operations 

create a robust and reliable barrier to oxidation in air at temperatures of up to 3300 °F for short durations, and 2750 

°F for indefinite operation; however, the coating process can account for a relatively large percentage of the overall 

cost of a C-C part, and can significantly affect schedule during manufacture. The conversion coating step also 

requires the availability of a high temperature furnace, which can be a limiting factor when considering the 

fabrication of large-scale oxidation resistant C-C structures.  

For these reasons, C-CAT has in recent years developed several EMCC material systems, which have shown 

promise in providing oxidation resistance without the need for the SiC conversion coating process. The two EMCC 

material systems selected for testing were originally developed by C-CAT for use in the harsh conditions inherent in 

high Mach number hypersonic flight, at temperatures exceeding the maximum effective range in air for the standard 

SiC conversion coating21.  

All four nozzle extensions were manufactured using satin weave fabric with T-300 fibers, 3000 filaments per 

tow, heat-treated prior to layup. The heat-treated carbon fabric was then pre-pregged using varying resin systems, 

each one based on a phenolic base with varying fillers and refractory particles added as enhancements. Identical 

male layup tools were fabricated for each nozzle extension using a high-density graphite material.  

To address the inherent challenges in manufacturing a closed shape in C-C with a relatively large thickness and 

small diameter, layup for each nozzle extension was split into two stages, with intermediate pyrolysis and processing 

steps performed between each stage. A gore layup was used, with each ply being uniformly divided into axially-

oriented strips butt spliced together to form a full ply. To minimize the impact that the presence of the butt splices 

might have on in-plane strengths, a pattern for offsetting the clocking of the splice pattern of each ply was devised, 

which was tailored to maximize the distance between butt splices through the thickness of each article.  

The acreage region of all four C-CAT nozzle extensions was laid up with each gore segment spanning the entire 

length of the extension, beginning at the flange outer circumference and terminating at the aft edge. The thickness of 
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the flange was built up using additional plies interleaved with the gore plies, which provided the stock material 

required to machine the final geometry of the flange. The ply schedule used was tailored to target a quasi-isotropic 

laminate in the acreage region after final machining, with two additional plies being laid up on the outer surface to 

ensure sufficient stock material to hit the desired thickness. However, the decision was made to machine only the 

flange and neck regions which would interface with the split ring retainer on the test stand, and simply skim the 

remaining OML surface to remove the bag-side surface roughness. For layup of the flange, the primary target was to 

maintain a balanced layup, with equal numbers of positive and negative 45° buildup plies. Layup was performed in 

the same way for all four nozzle extensions.  

After layup was completed, each nozzle extension was then pyrolyzed and densified six times using C-CAT’s 

standard process, which consists of repeated cycles of phenolic resin impregnation, cure, and pyrolysis processing 

steps. Final machining of all articles occurred following the fourth densification and an intermediate heat treatment 

step. The machining process was performed by first mounting each nozzle extension on a mandrel, which had been 

machined using the 2D template and tracer lathe used for the fabrication of the male graphite layup tools. A tracer 

lathe template, with the OML contour of the nozzle extension design, was then used to machine the neck and flange 

regions. It was at this point in the fabrication process that the uncoated nozzle extension was damaged. 

 

 

D. Subscale Hot-Fire Testing of OATK and C-CAT Nozzle Extensions 

 

Testing on C-C extensions was completed from 2014 to 2016 at MSFC TS115. A summary of the testing is 

shown in Table 2. A total of 43 tests were completed over this time period to characterize the C-C material and 

coating systems in a LOX/GH2 environment. MSFC completed mainstage testing on the various OATK and C-CAT 

nozzle extension and coating configurations. The primary goal of testing was to complete hot gas exposure of the 

nozzle extensions at a temperature approximately 2400-3500+˚F for extended durations. Chamber pressures (Pc) of 

550-750 psig and mixture ratios from 3.5 to 5.9 were utilized.  

Two infrared cameras, mid-wavelength and high-wavelength, were setup to one side of the nozzle extension. A 

series of high speed, low speed and still cameras were also position around the test article to capture visual data 

during the testing. Cameras were positioned to allow for external and internal views of the extensions. 

 

Table 2. Summary of hot-fire testing completed on C-C extensions. 

 

The Orbital ATK extensions and coatings completed two rounds of testing in 2014 and again in 2016. Test time 

was accumulated during both test series for those nozzle extensions where anti-oxidation coating and flange 

attachment methods were being evaluated. Hot-fire testing of the OATK nozzles can be a seen in Figure 8. 

Base Material Anti-Oxidation Protection Accumulated Duration 

coating sec

OATK TW Rapid Densification 3 Cycles Bare 10

OATK TW Rapid Densification 3 Cycles COIC-SiC, No Filler 90

OATK TW Rapid Densification 3 Cycles PPI ZrB2+SiC, APS 30

OATK TW Rapid Densification 3 Cycles Exothermics Si-Partial SiC 155

OATK TW Rapid Densification 3 Cycles PPI MoSi2-based, VPS 30

OATK TW Rapid Densification 3 Cycles COIC-SiC + Hf-based Filler 720

OATK TW Rapid Densification 3 Cycles COIC-SiC + Zr-based Filler 480

C-CAT 40 ACC-4 Bare 240

C-CAT 40 ACC-6 SiC Conversion 2050

C-CAT EMCC ACC-6 None, SiC-enhanced resin EMCC 10

C-CAT EMCC ACC-6 ZrB2/HfC enhanced matrix EMCC 64
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Figure 8. Hot-fire testing of OATK C-C nozzle extensions at MSFC Test Stand 115. 

[Photo credit: David Olive / MSFC] 
 

For purposes of further discussion, three of the OATK nozzles will be highlighted in this section. These nozzles 

include the COIC SiC-based coating with the Hf-based and Zr-based filler and also the Exothermics Si-partial SiC-

based coating. The COIC SiC-based coating with Zr-filler can be seen in Figure 9. Some of the white residue on the 

inner surface can be attributed to the triethylaluminum and triethylborane (TEA-TEB) ignition; there is also some 

minor erosion present. The COIC Zr-based extension had minimal weight loss (<6%) on the IML and outer mold 

line (OML) surfaces. The region of flow separation can be observed visually through discoloration on all the OATK 

test nozzle extensions.  
 

 
Figure 9. OATK COIC Zr-based filler nozzle extension progression of accumulated hot-fire testing time.  

3 Starts, Post-120 sec 240 sec

360 sec 480 sec
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The OATK COIC Hf-based filler extension accumulated a total of 720 seconds of hot-fire testing with <23% 

weight loss at mixture ratios >5.5. The progression of accumulated time on this nozzle can be seen in Figure 10. A 

significant amount of erosion can be seen in the region of flow separation, which was predicted entering the test 

series. Accelerated erosion of the local IML surface in the area of flow separation was observed following an 

accumulated time of 360 seconds. The SiC-based Exothermics extension can be observed in Figure 11 and 

experienced <4% weight loss following 155 seconds of accumulated hot-fire time. 
 

 
Figure 10. OATK COIC Hf-based filler nozzle extension progression of accumulated hot-fire testing time. 

 

 
Figure 11. OATK extension with Exothermics partial SiC/SiC-based coating system after hot-fire testing. 

3 Starts, Post-120 sec 240 sec 360 sec

480 sec 600 sec 720 sec

Post-60 sec Post-155 sec, IML Post-155 sec, OML
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The C-CAT nozzle extensions completed testing in 2016. Prior to each test, the nozzle extension was installed 

with a new split ring, a tantalum backer ring, and a new Grafoil seal (as discussed in the design section). A total of 

25 mainstage tests were completed on the C-CAT nozzle extensions, although some tests were shut down early due 

to facility redlines. There were no premature shut downs due to the nozzle extensions, chamber, or interface 

hardware. 
 

 
Figure 12. Hot-fire testing of C-CAT C-C extensions at MSFC TS115. Streaks can be observed in some of the 

camera images. [Photo credit: David Olive/MSFC] 
 

1. C-CAT ACC-4, No Coating 

In the first test of the uncoated C-CAT extension, the interior ply at the location of the machining-induced crack 

noted previously exhibited some erosion, additionally some minor erosion of the IML and OML surfaces was 

observed. The unit remained attached to the chamber assembly for the full 120 seconds of mainstage firing. The 

crack was located at the 3 o’clock position looking forward. In the second test of the extension, the aft end began to 

erode further, but it still remained attached to the assembly. Overall it performed much better than expected, 

considering it was of a lower density than the other units and had no coating applied to its structure. 



53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA          (AIAA-2017-5064) 

  

 

16 

American Institute of Aeronautics and Astronautics 

 

 

 

 

Significant vapor and air entrainment flows were observed in the high speed video along the OD surface and at 

the aft end of the nozzle. This additional oxygen from the air entrainment caused the carbon matrix to break down 

on the OML surface of the nozzle extension and accelerated oxidation at the aft end, leading to significant aft-end 

erosion. There was little erosion on the internal surface of the nozzle extension toward the forward end following 

240 seconds. This demonstrates that the combustion environment was not as oxidizing for carbon materials as 

theorized at these conditions and that the nozzle extension could survive if a coating experienced some spallation. 

Only minor erosion was observed on the IML of the nozzle extension following 240 seconds of accumulated test 

time, including at the forward end just aft of the interface with the chamber, which was the hottest region. 

 

2. C-CAT ACC-6 with SiC Conversion Coating 

C-CAT extension with the SiC conversion coating completed a series of 18 test firings and accumulated a total 

of 2,050 seconds. There were no indications of any issues with the material or no evidence of erosion during the test 

series on either the internal or external surfaces, although some discoloration was observed. The early indications of 

material changes were likely due to glassifying of the coating, or transitioning from SiC to SiO2, which provides 

further oxidation protection. This condition did not affect the performance of the nozzle extension and demonstrated 

robustness in the ACC-6 material and coating. A progression of the ACC-6 extension hot-fire time accumulation 

with SiC conversion coating can be seen in Figure 13. 

 

 
Figure 13. Progression of C-CAT SiC conversion coated extension testing. Note: Lighting conditions were 

changing throughout the testing, there was no color change. Also, the clocking was slightly different for the first 

72 seconds (3 tests) but remained consistent thereafter. 

Following several tests on the C-CAT SiC conversion-coated nozzle extension, an early shutdown and initiation 

of the water deluge system caused significant water impingement on the hot extension. This occurred at 7.8 seconds 

into mainstage operation with the nozzle extension at approximately 1200oF. During post-test inspections, the nozzle 

extension appeared mostly dry following this off-nominal operation. There were minor water spots observed on the 

extension, but no visible evidence of moisture. To mitigate any additional moisture concerns with the material, it 

was dried at 225-250oF to help evaporate any trapped moisture. 

Pretest 72 sec 222 sec

790 sec 1690 sec 2050 sec
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 The extension completed a structured-light dimensional scan after an accumulated time of 790 seconds22. The 

scan data was compared to the pre hot-fire condition dimensional scan data. The minor variations observed in the 

data indicated a slight increase in material thickness (~0.001”), but it was determined this was likely due to camera 

alignment issues and limits with the structured-light scanning technology for the scanning resolution employed. 

Therefore, the extension was determined to be unchanged. 

A later test was also cut off early at approximately 0.5 seconds into mainstage operation due to a facility valve 

anomaly; the shutdown sequence was similar to a nominal test though. The nozzle extension was inspected, but the 

split ring and Grafoil seal were not replaced following this test. A minor leak was observed during the following 

mainstage test. Inspection of the nozzle extension following this test indicated some surface roughening in both the 

flange area and at about 0.75” aft on the surface acreage due to external burning and subsequent oxidation from the 

joint leak. This did not affect performance of the extension. 

 

3. C-CAT Extension ACC-6, Fiber Filled SiC Enhanced Resin   

The C-CAT SiC enhanced-resin EMCC extension completed a 10-second mainstage test. In the final seconds of 

this test, material was seen being expelled from within the nozzle extension, and post-test inspection confirmed that 

2-3 plies of the IML surface had been stripped away in two large areas visible in Figure 14. The damage seemed to 

have initiated near the aft-end edge and along the butt splice interfaces of adjacent gore segments, where it was 

evident that the splices had failed via in-plane buckling. The areas where no material was lost, but where significant 

blistering was present, can be seen in the zones of discoloration in Figure 14. This process of buckling and 

subsequent blistering appears to have been the primary mode of failure which eventually resulted in the localized 

shedding of the affected plies during the final seconds of the test.  

 

 
Figure 14. C-CAT EMCC extension with SiC-enhanced resin; Before (left) and after (right) initial 10-

second test 

The failure of the IML surface ply in buckling suggests that the issues were related to thermal shock, resulting 

from the relatively large through-thickness temperature gradients present during the initial moments of the test. The 

camera footage from testing and the post-test inspection suggest that the thermal expansion of the IML ply and a 

through-thickness thermal conductivity which proved insufficient for the relatively high heat fluxes at the wall 

during startup led to the buildup of in-plane stresses, producing the buckling failures observed. After the formation 

of the blisters along the surface, the affected areas of the exposed ply were no longer in solid thermal contact with 

the substrate, leading to further increases in temperature and ultimately a localized total failure of the ply. 

 

Pre-Test Post 10 sec
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4. C-CAT Extension, ACC-6 zirconium diboride (ZrB2)/hafnium-carbide enhanced matrix 

A 10 second test was performed on C-CAT EMCC zirconium diboride/hafnium-carbide extension, which 

produced results similar to those observed for the EMCC SiC-enhanced resin, with the same pattern of ply buckling 

and subsequent shedding of material in areas along the inner surface shown in Figure 15. However, lower levels of 

overall damage were noted, and the buckling was observed to have occurred along the center line of the gore 

segments, rather than along the butt splices.  

 

 
Figure 15. C-CAT EMCC Extension with Zirconium Diboride/Hafnium-Carbide matrix; Before and after 

the initial 10-second test. 

In spite of the damage already present, a second test, 53.9 seconds in duration, was performed on this same 

EMCC extension. Predictably, post-test inspection revealed that additional sections had been stripped away, with 

failures initiating in the areas where blisters had already formed during the initial 10 second test. However, 

significant material loss was also observed along the entire circumference of the aft edge, which appeared to be due 

to gradual recession, rather than complete and sudden disbonding of the affected plies. While quantitative thermal 

imaging data of the IML surface is not available, it does appear that this area corresponds to a visibly higher 

temperature zone which can be seen along the aft-end edge of the C-CAT SiC conversion-coated extension, which 

may account for the increased recession observed. Composite infrared (IR) thermography images can be seen in 

Figure 16, which shows the first test of each C-CAT extension at start + 10 seconds plus two additional tests. 

Two primary plausible explanations have been identified which address the significant differences observed 

between the test results for the C-CAT coated and uncoated nozzle extensions. One likely important way in which 

the fabrication process for the uncoated EMCC nozzle extensions differed from that of the SiC conversion-coated 

extension, and likely affected their performance in testing, was the fact that the uncoated extensions did not receive 

a final high-temperature heat treatment cycle after completing densification, while the SiC conversion-coatied 

extension did undergo a high-temperature heat treatment as part of the final coating process. Small and relatively 

thick closed-shape 2D C-C structures such as these nozzle extensions are inherently very stiff, and have significant 

built-in residual stresses due to through-thickness shrinkage experienced during processing and the high 

temperatures used for pyrolysis. Given the geometry of the nozzle extensions and the harsh test conditions, a final 

heat treatment might have been necessary and sufficient to ensure successful survival through the initial thermal 

shock in testing. In the past, issues of spallation of coating due to thermal shock in arc jet testing have been 

successfully addressed through the application of a heat treatment step prior to testing, providing further reason to 

believe that doing the same for these uncoated extensions might have proved beneficial.  

 

Pre-Test Post 10 sec
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Figure 16. Comparison of infrared (IR) thermography imaging for C-CAT extensions at start +10 seconds 

with various amounts of streaking observed. Note: Tests -002, -007, -021 are with the SiC conversion coating. 

Another possibility is that the cracks that are inherent in the SiC coating layer played an important role in ensuring 

the survival and success of the SiC conversion-coated nozzle extension. The conversion coating process introduces 

cracks within the coating layer, which form due to the mismatch of coefficients of thermal expansion between the C-

C substrate and the newly-converted layer of SiC. During cooldown from the conversion-coating process 

temperature, this layer of SiC tends to contract more than the C-C beneath, leading to the formation of craze cracks 

along the surface. It is possible that these cracks in the coated surfaces provided sufficient room for the IML surface 

to grow independently of the C-C substrate without generating the same in-plane stresses which led to the buckling 

observed in the C-CAT EMCC uncoated extensions, despite the presumed presence of similar through-thickness 

thermal gradients during the initial moments of hot-fire testing.  

 

 

III. C-C Coupon, Subelement, and Measurement Support Testing 

A. 35K Nozzle Extension Design and Proposed Hot-fire Testing 

C-CAT and NASA jointly completed design of 35K-lbf sized nozzle extension hardware as part of the chamber 

testing planned under the Low Cost Upper Stage Propulsion (LCUSP) program23.  The LCUSP program is 

advancing additive manufacturing of the GRCop-84 copper alloy for liquid engine hardware using selective laser 

melting and application of a bimetallic deposition jacket.  The LCUSP program is developing a liquid oxygen/liquid 

hydrogen (LOX/LH2) chamber providing high heat fluxes with a Pc of 1400 psig.  In order to allow for a C-C 

extension to be tested in this environment, it would have to replace the regen nozzle in a thrust chamber assembly 

(TCA) only test series.  This is due to the high area ratio of the regen nozzle, which would result in the composite 

nozzle extension not flowing full if it were integrated at the aft end of the regen nozzle.  The regen nozzle area ratio 

was maximized to allow for sea-level testing without flow separation.  The test setup for this C-C subscale nozzle 

extension would include the LCUSP chamber and injector, a film coolant ring at the aft end of the MCC, and the C-

C nozzle extension attached to the film coolant ring (see Figure 17a, below). Film cooling is necessary due to the 

low area ratio attachment of the composite extension onto the LCUSP chamber. 

Under a SBIR Phase III program, C-CAT fabricated two composite nozzle extensions for testing with the 

LCUSP hardware: (1) a PAN-based ACC-6 SiC conversion-coated C-C nozzle extension,  (2) a lyocell-based C-C 

nozzle extension. These extensions are shown below in Figure 17b and Figure 17c.  As a means of understanding the 

properties and capabilities of these composite nozzle extensions, the tag-end rings removed from the aft ends of the 

extensions were used for a series of tests performed at Southern Research, which are described in the next section. 
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Figure 17. (a) LCUSP engine with a C-C composite nozzle extension.  (b) PAN-based ACC-6 C-C nozzle 

extension with a SiC conversion-coating – fabricated by C-CAT.  (c) Lyocell-based C-C nozzle extension, 

uncoated – fabricated by C-CAT.  Note:  The two nozzle extensions have the same dimensions, as they were 

fabricated with the same tooling at Carbon-Carbon Advanced Technologies (C-CAT). 

 

B. Coupon and Subelement Testing of LCUSP Nozzle Extension Tag-End Ring Materials 

 Initial investigations into the feasibility of using lyocell-based carbon-carbon composite materials for upper-

stage liquid rocket engines began in 2012 with a Small Business Technology Transfer (STTR) project.  Carbon-

Carbon Advanced Technologies, Inc. and Southern Research jointly conducted this study, which investigated a 

variety of processing parameters aimed at developing a lyocell-based C-C with mechanical and thermal properties 

appropriate for a composite nozzle extension.  As the STTR results were promising, when the opportunity arose to 

fabricate a pair of composite nozzle extensions for testing with the Marshall Space Flight Center LCUSP hardware 

(presented in the previous section), polyacrylonitrile- (PAN) and lyocell-based composites were chosen.  The C-C 

nozzle extensions were fabricated through a SBIR Phase III effort.  As a means of assessing both the quality and 

potential performance capabilities of the pair of C-C extensions, a mechanical and thermal properties test effort was 

conducted using tag-end ring material.  This mechanical/thermal properties assessment was performed under the 

NASA Space Launch System (SLS) Program. 

 After tag-end rings (approximate dimensions:  diameter = 27 in.; height = 4 in.) were removed from the aft ends 

of the pair of composite nozzle extensions, the materials were examined by a variety of nondestructive evaluation 

(NDE) techniques.  These NDE methods included:  (a) three-dimensional structured-light scanning, (b) computed 

tomography (CT), and (c) infrared thermography (IRT).  All of the NDE methods indicated that the two tag-end 

A

B

C
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rings were of high quality from a dimensional uniformity standpoint and that they were free of significant defects or 

anomalies.  Additionally, x-ray radiography inspections were performed on the individual test specimens excised 

from the two tag-end rings.  The individual test specimens were also found to be free of significant defects. 

 Southern Research performed a series of 16 tests with each of the two tag-end rings, for a total of 32 tests.  For 

both the lyocell-based C-C tag-end ring and the PAN-based C-C tag end ring, the following tests were performed:  

(a) two conical ring hoop tension tests, (b) six axial (longitudinal) compression tests, (c) six interlaminar tension 

tests, and (d) two hoop thermal expansion tests. Figure 18 shows the PAN-based C-C tag-end ring prior to the 

sectioning and machining of test specimens, as well as typical post-test images of a conical ring hoop tension 

specimen, an axial compression specimen, and an interlaminar tension specimen.  Note:  all test specimens (except 

for the hoop tension specimens) were machined flat prior to testing by removing just enough material to enable 

material property tests to be conducted without having to deal with the complications caused by curved surfaces.  

The axial (longitudinal) compression specimens were 2.25-in. long dog-bone specimens, while the interlaminar 

tension specimens were approximately 1-in. diameter cylindrical button specimens. 
 

 
 

Figure 18.  (a) The nominally 27.5-in. diameter, 4-in. high, tag-end ring sectioned from the aft end of the 

PAN-based ACC-6 SiC conversion-coated C-C nozzle extension; (b) a post-test conical-ring hoop tension 

specimen viewed in the axial direction – note fibrous nature of failure region and the overall contraction of 

the post-test specimen; (c) a post-test axial (longitudinal) compression specimen viewed from the side – note 

failure region near center of test specimen gauge region; and (d) both pieces of a post-test interlaminar 

tension specimen viewed in the through-the-thickness direction – failure occurred in within the C-C 

composite material and not at/near the interfaces with the test fixtures.  Note:  All of the test specimens shown 

were excised from the tag-end ring shown in (a). 

 

The conical ring hoop tension tests were performed through hydrostatic loading of the inner surfaces of the test 

specimens machined from the tag-end rings.  Each hoop tension specimen had a height (axial direction) of 0.5 in.  A 

pair of rings was tested for both of the C-C material types – the approximate average diameters of the two rings for 

each material were 26.0 and 26.5 in.  Prior to hoop tension testing, an analytical assessment was performed by 

Materials Research and Design (MR&D) to ascertain the best means of fixturing and loading the test specimens, 

which presented some challenges as the specimens were conical sections of nozzle extensions and not simple right 
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circular cylinders.  Analysis indicated that testing could be performed with the primary loading being in the hoop 

direction and only minimal generation of stresses in other directions.  The conical ring hoop tension tests results are 

summarized in Figure 19a.  From the figure, it can be seen that both materials (lyocell- and PAN-based) yielded 

similar strain-to-failure results, with the PAN-based C-C being considerably stronger, but also much stiffer.  The 

axial compression results (shown in Figure 19b) indicate that the two C-C materials have similar compressive 

strengths, but that the lyocell-based C-C offers considerably greater strain-to-failure capability due in part to its 

lower modulus.  Although not being presented at this time, the interlaminar tension and circumferential thermal 

expansion test results also indicated significant differences between the two types of C-C composite materials. 

 
Figure 19. (a) Conical ring hoop tension tests results for both the PAN- and lyocell-based C-C materials.  

Two ring specimens were tested at room temperature for each material.  Two sets of results are shown for the 

second test of each material because strain was measured by two different techniques for those specimens – 

with longitudinal and hoop strain gauges, and with circumferential wires used to measure total hoop strain.  

Both materials yielded similar strain-to-failure results, with the PAN-based C-C being considerably stronger, 

but also much stiffer.  (b) Axial compression test results for both the PAN- and lyocell-based C-C materials.  

Two groups of three specimens each were tested at room temperature for both C-C materials – the groups 

were excised from the tag-end rings at locations approximately 90º apart (solid vs. open symbols on graph).  

The two C-C materials have similar compressive strengths, but that the lyocell-based C-C offers considerably 

greater strain-to-failure capability due in part to its lower modulus. 

 

C. Digital Image Correlation Supporting C-C Extension Development 

Digital image correlation (DIC), specifically the GOM ARAMIS system, is an integral technology being used as 

part of C-C nozzle extension development. This optical non-contact deformation measurement technique can obtain 

full surface time-domain displacement, acceleration, and strain data at room and elevated temperatures to evaluate 

local and global deformations and stresses. The system uses two high-speed cameras that are calibrated in 3D-space 

using a reference carbon-fiber calibration artifact. After establishing the camera positions and accounting for any 

lens distortions, the target specimens (nozzle extensions) are speckled with a random black and white stochastic 

pattern. A variety of paints are used for room and high temperature applications and speckling is often aided with a 

vinyl template24. The speckle pattern allows the software to calculate unique tracking points and surface locations 

across the component with respect to time, and subsequently the surface strains and displacements, by building a 

mesh.  

 Data was collected during subscale hot-fire testing for the first firing of the uncoated C-CAT extension (prior 

DIC data collection was conducted on metallic nozzles as discussed in another publication21. The data collection on 

this nozzle extension was limited to an initial 120 second test due to spalling of the paint from overheating. The 

paint was not reapplied. VHT FlameProofTM white paint (SP101) was used for this testing, thus allowing for the 

elevated temperature testing.  The C-C material was used as the contrasting black background. Visibly, at room 

temperature, the white paint had good contrast with the black C-C material. During heating of the nozzle extension 

the contrast inversed where the C-C material was high intensity and the paint was low intensity. This data was 
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collected in the visible spectrum with no filtering. The visible imaging from the high speed cameras can be seen in 

Figure 20. 

 

 
Figure 20. High speed images collected during digital image correlation assessments. It was observed that 

the contrast speckle pattern inversed during surface temperature increases causing issues with resolving the 

DIC data for the duration of the test. 

The DIC software had issues with resolving and applying the mesh to the extension since the contrast pattern 

inversed during the test as the nozzle increased in temperature. It was shown that data could be resolved at high 

temperature after the inverse of colors was accounted for and the extension was at thermal equilibrium, as seen in 

Figure 21. There were not any significant strain or displacement events during this time period, so the absolute 

values were unknown. A baseline pre-test image to compare against for displacements and strains was also not 

possible since the stochastic pattern had inversed. This did demonstrate the feasibility of using the DIC system at 

elevated temperatures; the system is being further evaluated in other research and development applications of C-C 

nozzle extensions. Additional ultraviolet (UV) wavelength and non-visible techniques are being considered for 

future C-C hot-fire testing applications25,26. Alternative paints or patterning techniques are also being considered to 

allow for a consistent contrast pattern across all temperatures during testing. 
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Figure 21. DIC imaging of the nozzle extension at elevated temperatures. Data was limited though as the 

paint spalled. Note: A baseline strain could not be obtained since the paint inversed color during heating. 

Digital image correlation has also been used as part of C-C extension evaluations during large-scale lab testing. 

A DIC system identical to that used during the hot-fire testing was setup to support boost-phase shaker testing. A 

full-scale 33” axial length C-CAT ACC-6 SiC conversion-coated nozzle extension fabricated under a NASA SBIR, 

was speckled using the room temperature paints and the high speed system was employed to gather data using the 

DIC technique and its use with the C-C extension. Response data was collected during various shock and boost 

simulation testing to determine overall deformation, mode shapes, accelerations and frequency response of the 

nozzle extension. An image from this testing can be seen in Figure 22. 

 

 
Figure 22. DIC applied to full-scale nozzle extension during simulated boost load shaker testing. a) Full 

surface displacements using DIC during testing, b) Discrete point data shown graphically from testing. 
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IV. Conclusions 

NASA has been investing in and evaluating C-C materials for use in upper-stage and in-space propulsion 

applications. There are significant opportunities to make use of these materials for weight savings on future 

missions. A variety of industry vendors and partners are advancing the materials, coatings, and analysis techniques 

required for the application of composite nozzle extensions, although additional development is still required to 

further advance the materials into flight applications.  

Hot-fire testing at MSFC TS115 has enabled the advancement of C-C materials and the development of data to 

facilitate processing changes to further optimize the nozzle materials. The testing was low cost and allowed for 

significant data and visual information to be collected quickly in a relevant environment. MSFC maintains this test 

capability for applications like this, which allows for a variety of rapid hardware change-outs and the ability to 

change test conditions in order to meet customer requirements. 

The OATK extensions performed well in the hot-fire environment and showed minimal signs of erosion. Times 

of 480 and 720 seconds were accumulated on the COIC Zr- and Hf-based fillers, respectively. These extensions will 

be non-destructively and destructively evaluated to better understand the minor erosion observed. The Exothermics 

SiC-based coating also performed well and may be further evaluated in the future. 

The C-CAT ACC-6 extension with the SiC conversion coating performed well in hot fire testing. This extension 

accumulated 2,050 seconds of hot-fire time. The nozzle extension will be further evaluated through non-destructive 

inspections and potentially destructive testing to further evaluate and fully understand the material’s capabilities in 

this oxygen/hydrogen engine environment. The C-CAT experimental-material extensions experienced ply lifts 

during hot-fire testing, likely due to the high thermal gradients across the extensions’ walls. Testing provided 

performance data on these materials, enabling potential changes to processing conditions to address the observations 

from test. Despite the ply lifts, the nozzle extensions maintained their structural integrity and continued testing 

demonstrated that the materials have potential for future applications. 

MSFC has completed fabrication of additional moderate-scale nozzle extensions sized for a 35K-lbf thruster, in 

addition to test specimens for subcomponent testing27. These nozzle extensions include both the C-CAT ACC-6/SiC 

conversion-coated material and also the C-CAT lyocell-based material. These nozzle extensions will complete hot-

fire testing at MSFC in mid-2017. 

High temperature composite C-C nozzle extension design, analysis, processing, inspection and testing techniques 

are being advanced to make these materials viable candidates for use on upper stage and in-space liquid rocket 

engines. Application of these composite materials provides the opportunity to significantly reduce weight to provide 

additional engine performance, as well as to reduce costs when compared to foreign suppliers. Infrared 

thermography was an extremely valuable technique to collect full-surface temperature data. It is recommended that 

thermography continue to be used for C-C extensions during test to help characterize performance and any potential 

failures. 

The feasibility of using the digital image correlation ARAMIS measurement system for collecting data at 

elevated temperatures on C-C materials was demonstrated. This data was collected in the visible spectrum with no 

filtering. Additional ultraviolet (UV) wavelength and non-visible techniques may be considered for future composite 

applications. Alternative paints or patterning techniques may also be considered to enable a consistent contrast 

across all temperature regimes during testing.  

C-C nozzle extensions have the potential to enable significant cost and weight savings for NASA and 

commercial space partner missions, but require additional development. These development areas include further 

material testing and characterization, material processing development and scale-up, coatings for extended duration 

missions, development of ultra-high temperature materials, non-destructive evaluation techniques and support 

measurement systems for evaluations both during and after hot-fire testing.  
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